1/2ページ
カタログの表紙
カタログの表紙

このカタログをダウンロードして
すべてを見る

ダウンロード(324.9Kb)

「Coronavirus References using ForteBio Octet Systems」

事例紹介

このカタログについて

ドキュメント名 「Coronavirus References using ForteBio Octet Systems」
ドキュメント種別 事例紹介
ファイルサイズ 324.9Kb
取り扱い企業 ザルトリウス・ジャパン株式会社 (この企業の取り扱いカタログ一覧)

この企業の関連カタログ

この企業の関連カタログの表紙
Cubis(R) II ウルトラ ハイレゾリューション天びん
製品カタログ

ザルトリウス・ジャパン株式会社

この企業の関連カタログの表紙
Cubis(R) IIの製薬コンプライアンス・バイ・デザイン
ホワイトペーパー

ザルトリウス・ジャパン株式会社

この企業の関連カタログの表紙
バクテリア・真菌検出キット「Microsart ATMP Bacteria/Fungi」
製品カタログ

ザルトリウス・ジャパン株式会社

このカタログの内容

Page1

Coronavirus References ForteBio Octet Systems 1. Daniel Wrapp et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Mar; 367(6483): 1260-1263. doi: 10.1126/science.abb2507. 2. Xiaolong Tian et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging Microbes & Infections. 2020 Dec; 9(1): 382-385. doi: 10.1080/22221751.2020.1729069. 3. Li Y et al. A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein. Cell Res. 2015 Nov; 25(11): 1237-49. doi: 10.1038/cr.2015.113. 4. Ha V. Dang et al. An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections. Nature Structural & Molecular Biology. 2019 Oct; 26(10): 980-987. doi: 10.1038/s41594-019-0308-9. 5. Y. Cai. Effects of Active Site Inhibitors on APN-dependent Coronavirus Entry. Thesis. 2017 June. 6. Lingshu Wang et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nature Communications. 2015 Jul 28; 6: 7712. doi: 10.1038/ncomms8712. 7. Yaping Sun et al. Identification of a Novel Inhibitor against Middle East Respiratory Syndrome Coronavirus. Viruses. 2017 Sep 14; 9(9). pii: E255. doi: 10.3390/v9090255. 8. Wang L et al. Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape. Journal of Virology. 2018 Apr 27; 92(10). pii: e02002-17. doi: 10.1128/JVI.02002-17. 9. de Wispelaere M et al. Inhibition of Flaviviruses by Targeting a Conserved Pocket on the Viral Envelope Protein. Cell Chemical Biology. 2018 Aug; 25(8), 1006-1016.e8. doi: 10.1016/j.chembiol.2018.05.011. 10. Haixia Zhou et al. Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein. Nature Communications. 2019; 10(3068). doi: 10.1038/s41467-019-10897-4. 11. Peihua Niu et al. Ultrapotent Human Neutralizing Antibody Repertoires Against Middle East Respiratory Syndrome Coronavirus From a Recovered Patient. The Journal of Infectious Diseases. 2018 Oct; 15218(8): 1249-1260. doi: 10.1093/infdis/jiy311. 12. Walls AC et al. Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell. 2019 Feb 21; 176(5): 1026-1039.e15. doi: 10.1016/j.cell.2018.12.028.
Page2

13. Xian-Chun Tang et al. Identification of human neutralizing antibodies against MERS_CoV and their role in virus adaptive evolution. Proc Natl Acad Sci U S A. 2014 May 13; 111(19): E2018-26. doi: 10.1073/pnas.1402074111. 14. M. Alejandra Tortorici et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nature Structural & Molecular Biology volume. 2019 Jun; 26(6): 481–489. doi: 10.1038/s41594-019-0233-y. 15. Chunyun Sun et al. SARS-CoV-2 and SARS-CoV Spike-RBD Structure and Receptor Binding Comparison and Potential Implications on Neutralizing Antibody and Vaccine Development. doi: 10.1101/2020.02.16.951723. [bioRxiv preprint] 16. Ivy Widjaja et al. Towards a solution to MERS_protective human mAb targeting different domains and functions of the MERS-coronavirus spike glycoprotein. Emerging Microbes & Infections. 2019; 8(1): 516–530. doi: 10.1080/22221751.2019.1597644. 17. Xian-Chun Tang et al. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. PNAS. 2014 May 13; 111(19): E2018-E2026. doi: 10.1073/pnas.1402074111. 18. Chunyan Wang et al. A human monoclonal antibody blocking SARS-CoV-2 infection. doi: 10.1101/2020.03.11.987958. [bioRxiv preprint] 19. Meng Yuan et al. A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV Science. 2020 Apr 03. doi: 10.1126/science.abb7269. 20. Alexandra C. Walls et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 March 09. pii: S0092-8674(20)30262-2. doi: 10.1016/j.cell.2020.02.058. [Epub ahead of print] 21. M. Gordon Joyce et al. A Cryptic Site of Vulnerability on the Receptor Binding Domain of the SARS-CoV-2 Spike Glycoprotein. doi: 10.1101/2020.03.15.992883. [bioRxiv preprint] 22. G. Zhang et al. The first-in-class peptide binder to the SARS-CoV-2 spike protein. doi: 10.1101/2020.03.19.999318. [bioRxiv preprint] 23. V.Stalin Raj et al. Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection. Science Advances. 2018 Aug 8; 4(8): eaas9667. doi: 10.1126/sciadv.aas9667. 24. Wahiba Aouadi et al. Binding of the Methyl Donor S-Adenosyl-l-Methionine to Middle East Respiratory Syndrome Coronavirus 2'-O-Methyltransferase nsp16 Promotes Recruitment of the Allosteric Activator nsp10. Journal of Virology. 2017 Mar 1; 91(5): e02217-16. doi: 10.1128/JVI.02217-16. © 2020 Sartorius BioAnalytical Instruments, Inc. All rights reserved. Fortebio and Octet are trademarks of Sartorius AG and/or any of its affiliated entities. Specifications subject to change without notice. For Research Use Only. www.fortebio.com FB_4018_J2 Rev D